Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2310431, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441366

RESUMEN

Innovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N2 ) to ammonia (NH3 ) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH3 production, electrochemical N2 reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCo2 S4 @MnO2 heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment. The urchin-like Sv-NiCo2 S4 @MnO2 heterostructures serve as cathodes, which demonstrate an optimal NH3 yield of 57.31 µg h-1  mgcat -1 and Faradaic efficiency of 20.55% at -0.2 V versus reversible hydrogen electrode (RHE) in basic electrolyte owing to the synergistic interactions between Sv-NiCo2 S4 and MnO2 . Density functional theory (DFT) simulation further verifies that Co-sites of urchin-like Sv-NiCo2 S4 @MnO2 heterostructures are beneficial to lowering the energy threshold for N2 adsorption and successive protonation. Distinctive micro/nano-architectures exhibit high NRR electrocatalytic activities that might motivate researchers to explore and concentrate on the development of heterostructures for ambient electrocatalytic NH3 generation.

2.
Small ; : e2310082, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470193

RESUMEN

Electrochemical conversion of nitrate, a prevalent water pollutant, to ammonia (NH3 ) is a delocalized and green path for NH3 production. Despite the existence of different nitrate reduction pathways, selectively directing the reaction pathway on the road to NH3 is now hindered by the absence of efficient catalysts. Single-atom catalysts (SACs) are extensively investigated in a wide range of catalytic processes. However, their application in electrocatalytic nitrate reduction reaction (NO3 - RR) to NH3 is infrequent, mostly due to their pronounced inclination toward hydrogen evolution reaction (HER). Here, Ni single atoms on the electrochemically active carrier boron, nitrogen doped-graphene (BNG) matrix to modulate the atomic coordination structure through a boron-spanning strategy to enhance the performance of NO3 - RR is designed. Density functional theory (DFT) study proposes that BNG supports with ionic characteristics, offer a surplus electric field effect as compared to N-doped graphene, which can ease the nitrate adsorption. Consistent with the theoretical studies, the as-obtained NiSA@BNG shows higher catalytic activity with a maximal NH3 yield rate of 168 µg h-1  cm-2 along with Faradaic efficiency of 95% and promising electrochemical stability. This study reveals novel ways to rationally fabricate SACs' atomic coordination structure with tunable electronic properties to enhance electrocatalytic performance.

3.
Adv Mater ; : e2313086, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341608

RESUMEN

A new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnBx ) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N2 on the Mn catalytic sites (*) and the hydrogenation of N2 to form *NNH intermediates. Furthermore, the increase in coordination number reduces the charge density of Mn atoms at the Fermi level, which facilitates the desorption of ammonia from the catalyst surface. Notably, the MnB4 compound with a Mn coordination number of up to 12 exhibits a high ammonia yield rate (74.9 ± 2.1 µg h-1 mgcat -1 ) and Faradaic efficiency (38.5 ± 2.7%) at -0.3 V versus reversible hydrogen electrode (RHE) in a 0.1 m Li2 SO4 electrolyte, exceeding those reported for other boron-related catalysts.

4.
Small ; : e2309029, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037486

RESUMEN

Layered oxides are widely used as the electrode materials for metal ion batteries. However, for large radius size ions, such as Zn2+ and Al3+ , the tightly stacked layers and poor electrical conductivity of layered oxides result in restricted number of active sites and sluggish reaction kinetics. In this work, a facile in-situ construction strategy is provided to synthesize layered oxide nanosheets/nitrogen-doped carbon nanosheet (NC) heterostructure, which shows larger interlayer spacing and better electrical conductivity than the layered oxides. As a result, the Zn2+ ion diffusion inside the interlayer gallery is greatly enhanced and the storage sites inside the gallery can be better used. Meanwhile, the NC layers and oxide nanosheets are bridged by the C─O bonds to form a stable structure, which contributes to a better cycling stability than the pure layered oxides. The optimal V2 O5 @NC-400 cathode shows a capacity of 467 mA h g-1 at 0.1 A g-1 for 300 cycles, and long-term cyclic stability of 4000 cycles at 5 A g-1 with a capacity retention of 92%. All these performance parameters are among the best for vanadium oxide-based cathode materials.

5.
ACS Appl Mater Interfaces ; 14(47): 52794-52805, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36394388

RESUMEN

Lithium-sulfur (Li-S) batteries are one of the emerging candidates for energy storage systems due to their high theoretical energy density and the abundance/nontoxicity/low cost of sulfur. Compared with conventional lithium-ion batteries, multiple new challenges have been brought into this advanced battery system, such as polysulfide shuttling in conventional polyolefin separators and undesired lithium dendrite formation of the Li metal anode. These issues severely affect the cell performance and impede their practical applications. Herein, we develop a poly(ether imide) (PEI)-based membrane with a sponge-like pore morphology as the separator for the Li-S battery by a simplified phase inversion method. This new separator can not only alleviate the new challenges in Li-S batteries but also exhibit excellent ion conductivity, better thermal stability, and higher mechanical strength compared to those of the conventional polypropylene (PP) separator. A combined experimental and theoretical study indicates that the sponge-like morphology of the PEI membrane and its good wettability toward the electrolyte can facilitate uniform ion transportation and suppress dendrite growth. Meanwhile, the PEI molecules exhibit a strong interaction with polysulfides and avoid their shuttling effectively. As a result, the PEI-based Li-S battery shows a much better performance from various aspects (capacity, rate capability, and cycling stability) than that of the PP-based Li-S battery, especially at high charge/discharge current densities and high sulfur loadings. Since the developed PEI membrane can be easily scaled up, this work may accelerate the practical applications of Li-S batteries from the point of separators.

6.
J Hazard Mater ; 439: 129653, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35901633

RESUMEN

Electroreducting nitrate (NO3-) into ammonia (NH3), i.e. NO3-RA, can not only relieve NO3- pollution but also produce high value-added NH3. Cu-based species have been taken as a promising catalyst for NO3-RA because of their relatively high Faradaic efficiency (FE), benefiting from the weak side hydrogen evolution reaction (HER). However, their NH3 yield rates are still unsatisfactory due to the multiple electron paths of NO3-RA. Herein, we report a Cu cube with Cu-CuO heterostructured skin, prepared by electrochemically induced reconstruction from a Cu2O cube. This novel Cu-based catalyst presents a mol-level NH3 yield rate of 3.17 mol h-1 g-1 ranking at the top level among non-noble metal catalysts and an ultrahigh FE of 98.7 %. These excellent performances attribute to the Cu-CuO heterostructured skin of Cu cubes, which has favorable energy for the hydrogenation of *NO to *NOH during the NO3-RA process and an unfavorable one for HER. For the NO3- removal of real river water, this novel Cu-based catalyst presents a high NO3- removal rate of 95.5 % after the NO3-RA test for 12 h, resulting in a lower NO3- concentration than the maximum residual amount of NO3- in drinking water limited by WHO and China. This study provides a feasible strategy by the electrochemical reconstruction method to prepare superior Cu-based electrocatalysts with mol-level NO3-RA performances for the purification of nitrate wastewater.


Asunto(s)
Nitratos , Aguas Residuales , Amoníaco , Cobre , Óxidos de Nitrógeno
7.
Chem Rec ; 21(4): 841-857, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33656241

RESUMEN

The rapid development of radical chemistry has spurred several innovative strategies for organic synthesis. The novel approaches for organic synthesis play a critical role in promoting and regulating the single-electron redox activity. Among them, photoelectrocatalysis (PEC) has attained considerable attention as the most promising strategy to convert organic compounds into fine chemicals. This review highlights the current progress in organic synthesis through PEC, including various catalytic reactions, catalyst systems and practical applications. The numerous catalytic reactions suffer the high overpotential and poor conversion efficiency, depending on the design of electrolyzers and the reaction mechanisms. We also considered the recent developments with special emphasis on scientific problems and efficient solutions, which enhance accessibility to utilize and further develop the photoelectrocatalytic technology for the specific chemical bonds formation and the fabrication of numerous catalytic systems.

8.
ACS Appl Mater Interfaces ; 11(32): 28809-28817, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31322336

RESUMEN

Efficient nitrogen fixation under ambient conditions is an exigent task in both basic research and industrial applications. Recently, reduction of N2 to NH3 based on photocatalysis and/or electrocatalysis offers a possible route to the typical Haber-Bosch process. However, achieving a high yield of N2 reduction reaction (NRR) is still a challenging goal because of the limitations of efficient catalysts. Herein, we propose a photoelectrochemical NRR route based on the rational design of MoS2@TiO2 semiconductor nanojunction catalysts through a facile hydrothermal synthetic method. The developed MoS2@TiO2 photocathode attains a high NH3 yield rate (1.42 × 10-6 mol h-1 cm-2) and a superhigh faradaic efficiency (65.52%), which is the highest record to the best of our knowledge. Moreover, MoS2@TiO2 exhibits high stability over 10 consecutive reaction cycles. Therefore, this work demonstrates an effective NRR photoelectrocatalyst and results in a breakthrough in the low faradaic efficiency because of the interfacial electronic coupling and synergistic effects between the MoS2 and TiO2 components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...